Chitosan-collagen scaffolds can regulate the biological activities of adipose mesenchymal stem cells for tissue engineering

نویسندگان

  • Idiberto José Zotarelli Filho
  • Luiz Fernando Frascino
  • Oswaldo Tadeu Greco
  • José Dalmo de Araújo
  • Aldemir Bilaqui
  • Elias Naim Kassis
  • Roberto Vito Ardito
  • Gustavo O. Bonilla-Rodriguez
چکیده

Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Healing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration

Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...

متن کامل

Enhanced Adipose Mesenchymal Stem Cells Proliferation by Carboxymethyl-Chitosan Functionalized Polycaprolactone Nanofiber

Background: Through combining two synthetic and natural polymers, scaffolds can be developed for tissue engineering and regenerative medicine purposes. Methods: In this work, carboxymethyl chitosan (CMC; 20%) was grafted to Polycaprolactone (PCL) nanofibers using the cold atmospheric plasma of helium. The PCL scaffolds were exposed to CAP, and functional groups were developed on the PCL surface...

متن کامل

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

بیان ژن‌های کلاژن یک- دو، اگریکان و SOX9 سلول‌های بنیادی مزانشیمی تمایز‌یافته روی داربست‌های مختلف زیستی

Background: Stem cells represent an ideal cell source for application in tissue engineering and regenerative medicine due to their ability to proliferate and differentiate to a wide variety of cell lineages. With recent development of medical sciences and tissue engineering, usage of adipose-derived mesenchymal stem cells, their culture and differentiation on suitable scaffolds are considered a...

متن کامل

Comparison of PLGA/Fibrin and PLGA/Hyaluronic Acid Scaffolds for Chondrogenesis of Human Adipose-Derived Stem Cells

Background and Aims: Tissue engineering is a relatively novel field that has been intensely developing during recent years and has shown to be excessively promising when used for cartilage regeneration. Scaffolds represent important components for tissue engineering. Materials and Methods: The Poly Lactic-Co-Glycolic Acid (PLGA) impregnated with fibrin and hyaluronic acid (HA) produce hybrid s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013